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ABSTRACT 
In this paper we consider several aspects related to the application of the pseudo-concentration technique 
to the simulation of mould filling processes. We discuss, in particular, the smoothing of the front when 
finite elements with interior nodes are employed and the evacuation of air through the introduction of 
temporary free wall nodes. The basic numerical techniques to solve the incompressible Navier-Stokes 
equations are also briefly described. The main features of the numerical model are the use of div-stable 
velocity-pressure interpolations with discontinuous pressures, the elimination of the pressure via an iterative 
penalty formulation, the use of the SUPG approach to deal with convection-dominated problems and the 
temporal integration using the generalized trapezoidal rule. At the end of the paper we present some 
numerical results obtained for a two-dimensional test problem showing the ability of the method to capture 
complicated flow patterns. 
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INTRODUCTION 

Mould filling is the first stage of the casting process, an ancient metal forming technique. It 
starts with the pouring of a molten metal into a mould until it is filled and it is concluded when 
the solid nature of the metal is restored. The complete numerical simulation of these processes 
involves modelling of mould filling, prediction of thermal stresses in a solidifying material and 
micro-macro modelling in order to predict material micro-structure. Besides the inherent 
difficulty in modelling all these physical phenomena, another problem arises because of the 
identification of material properties, for which delicate experiments are needed. 

The main difficulty when simulating the flow of a molten metal in a mould is the modelling 
of free surfaces. Most of the numerical approaches to this problem have been limited to simple 
geometries, due to the high computational cost of this simulation and that numerical models 
have been mainly based on finite difference techniques. Because of the available computer 
potential, it has become possible to deal with more complicated geometries for which finite-
element models are especially well suited. The representation of feeders, gating systems, risers 
and the overall mould geometry does not offer any difficulty when using finite elements. Proper 
evaluation of the position of the melt front during the transient analysis is the most important 
problem. 
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The model that we shall use here to track the free surface of the fluid is based upon the 
pseudo-concentration technique, also known as volume of fluid (VOF) method8. This technique 
employs a fixed mesh, the element of which may be filled partially or fully. The version of this 
method we shall use is due to Thompson12,13. The basic idea is to introduce a scalar function 
which is advected according to the velocity field obtained from the solution of the Navier-Stokes 
equations. This function is defined on the whole computational domain. A certain isovalue 
contour is used to define the front of the real fluid. The unfilled region is assumed to be occupied 
by a fictitious material whose physical properties are such that its motion does not affect the 
dynamical behaviour of the fluid under consideration. To fix ideas, we shall consider that this 
fictitious material is air. 

The pseudo-concentration technique has been used by several authors to follow free surfaces 
of creeping flows and viscoplastic flows in the context of metal forming processes, such as 
extrusion, forging and rolling. See, e.g., References 1, 7, 13. For applications of this method to 
mould filling, see References 6, 11. 

This paper is organized as follows. The statement of the problem is presented in the next 
section where the basic idea of the pseudo-concentration technique is also explained. The 
numerical strategy is then described, considering first the discretization in space, based on a 
Petrov-Galerkin formulation. An iterative penalty technique is used to eliminate the pressure 
from the momentum equations. The next two sections address some problems arising in the 
application of the pseudo-concentration technique to mould fillijg. Finally a practical numerical 
example is presented. 

THE NAVIER-STOKES EQUATIONS WITH A MOVING FREE SURFACE 

In this section we shall consider the general problem for an incompressible fluid in laminar 
regime and taking into account thermal effects, as well as the existence of a free surface within 
the domain Ω to be occupied by the fluid. 

The mechanical and thermal equations describing the problem are: 

to be solved in Ω × (0, T), where [0, T] is the time interval to be considered. In Equations (1), 
u denotes the velocity field, p the pressure, the temperature, ρ the density, μ the dynamical 
viscosity, which may depend on the invariants of the symmetrical part of the velocity gradient 
Ε(u), f the body forces, cp the specific heat at constant pressure, k the thermal conduction 
coefficient and Q the heat sources. 

Let σ be the stress tensor and n the unit outward normal to the boundary ∂Ω. Denoting by 
an overbar prescribed values, the boundary conditions for the velocity and the temperature to 
be considered here are: 
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for tЄ (0, T). The boundary ∂Ω has been considered split into three sets of disjoint components 
Γdu, Γnu and Γmu, the latter being the part of the boundary where mixed conditions are prescribed: 
the normal velocity and the tangent stresses. Vectors g1 and g2 (for the three-dimensional case) 
span the space tangent to Γmu. Also, Γdt and Γnt are the two disjoint components of ∂Ω where 
Dirichlet and Neumann boundary conditions for the temperature are prescribed, respectively. 
Initial conditions have to be appended to problems defined by (1)–(2). 

Concerning the tracking of the free surface, the basic idea of the pseudo-concentration technique 
is to define a scalar function, say ψ(x), over the computational domain Ω in such a manner that 
its value at a certain point xЄΩ indicates the presence or absence of fluid. This function may 
be considered as a fictitious fluid property. For instance, we may assign the value 1 to regions 
where the fluid has already entered and the value 0 to air-filled regions. The position of the fluid 
front will be defined by the isovalue contour ψ(x) = ψc, where ψc Є [0, 1] is a critical value defined 
a priori. We usually take ψc = 0.5. This value is immaterial if ψ is a true step function, but is 
needed in the finite element discretization and for the smoothing to be described later. 

The conservation of the pseudo-concentration (assumed to be sufficiently smooth) in any 
control volume which is moving with the divergence-free velocity field u leads to: 

This equation is hyperbolic and therefore boundary conditions for ψ have to be specified at the 
inflow boundary, defined as: 

Γinf := {xЄ∂Ω|u·n<0} 
The definition of the position of the fluid front will be given by the physical properties. Let π 
be any of these, i.e., density (ρ), viscosity (μ), specific heat (cp) or conduction coefficient (k). We 
will have that 

where 
Ωt :={xЄΩ|ψ(x, t)≥ψc} 

and the pseudo-concentration function ψ is the solution of the following problem: 

The initial condition ψ0 is chosen in order to define the initial position of the fluid to be 
analyzed. The boundary condition determines whether fluid enters or not through a certain 
point of the inflow boundary. If it does, a value is to be prescribed (for example, ); 
else, . We will come back to this point later. 

This is the formulation of the pseudo-concentration method. In (3), the property π for the 
fluid-filled region is allowed to depend on the unknowns of the problem, whereas it has been 
considered constant for the air, i.e., for the fictitious fluid. Observe that, since the physical 
properties will be discontinuous across the fluid front, the differential equations (1) will not 
exactly describe the conservation of momentum, mass and energy, since the jump of these 
properties has been ignored. Observe also, that since the fluid under consideration and the air 
are treated simultaneously, no boundary conditions at the interface between them are needed. 
For example, thermal boundary layers, usually dealt with by imposing a heat flux proportional 
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to the temperature jump, will be approximated depending on the mesh size and on the ability 
of the numerical formulation to capture high gradients. Nonlinear radiation conditions and 
other physical effects, such as surface tension at the fluid front have to be neglected using the 
pseudo-concentration technique. 

NUMERICAL MODEL 

Space discretization and SUPG method 
After choosing a suitable finite element partition {Ωe} of the domain Ω, with index e ranging 

from 1 to the number of elements Nel, the standard Galerkin method applied to (1) and the 
transport equation (4) will lead to an initial value problem of the form: 

GT·U = 0 (6) 

The following notation has been employed: capital letters U, P, Θ and Ψ denote the vectors of 
nodal unknowns of the corresponding lower case variables (velocity, pressure, temperature and 
pseudo-concentration, respectively); subscript v refers to the momentum equation (for the 
velocity), t to the temperature equation and f to the pseudo-concentration equation; M (with 
the appropriate subscript) denotes the standard mass (or Gramm) matrix; F the discrete force 
terms; Kc and Kd are the convective and diffusive (viscous) matrices for the Navier-Stokes 
equations and Hc, Hd their analogues for the energy balance equation; G is the discrete gradient 
matrix; and J is the matrix coming from the convective term of the pseudo-concentration 
equation. It is understood that the force terms account for both the Dirichlet and the 
Neumann-type boundary conditions. The dependence of all the arrays on the velocity has been 
explicitly indicated, as well as the dependence of Kd on the viscosity. 

In what follows, we shall assume thermally uncoupled flow, so that the temperature equation 
may be solved once the solution U, P for the Navier-Stokes equations is found. 

Let us discuss first the choice of the finite element spaces for the velocity and the pressure. 
It is well known that due to the zero-divergence restriction (6) these spaces have to satisfy the 
Babuška-Brezzi (BB) stability condition (often referred to as div-stability, for the problem 
currently considered). Moreover, we shall use a penalty method (see below) and it is therefore 
desirable to use discontinuous pressure interpolations, since this allows to eliminate the pressure 
at the element level in terms of the velocity unknowns. After substitution of the resulting 
expression in the momentum equation one ends up with a problem only involving velocities, 
and not pressures, as unknowns. For the examples presented, we have used the Q2/P1 element, 
which is constructed using a continuous biquadratic interpolation for the velocity components 
(in 2-D) and piecewise discontinuous linear pressures. See, e.g., Reference 14 for further discussion 
about the available velocity-pressure pairs. 

Concerning the finite element spaces for the temperature and the pseudo-concentration, we 
have used for both fields the same interpolation as for the velocity components. 

When the convective term in a transport equation becomes important the standard Galerkin 
formulation fails and numerical oscillations occur. Upwind techniques must be devised in order 
to overcome this problem. Here, we shall briefly describe the streamline-upwind/Petrov-Galerkin 
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(SUPG) formulation2 employed in our calculations. Consider, for instance, the momentum 
equations. The basic idea of the SUPG method is to perturb the standard test functions of the 
Galerkin approach, say vh, and to consider instead vh + ζh, where ζh is given by: 

This perturbation is discontinuous across interelement boundaries and thus it is considered to 
affect only the element interiors. Superscript e in (9) denotes the element under consideration. 
The velocity ue is a characteristic value for this element, that we take as the mean velocity over 
the element. For transient and iterative algorithms, this velocity is calculated using the values 
obtained in the last iteration of the current time step. 

The parameter τe is defined as: 

where βe is the upwind function and he the characteristic element length, that we compute as4: 

with β0 = 1 for linear elements and 1/2 for quadratic elements. Subscript nought refers to values 
in the standard parent domain14. We take h0 = 0.7 for triangles and 2.0 for quadrilaterals. (Re)e 

is the cell Reynolds number and μe the mean viscosity over the element. 
It is observed from (9) that the perturbation ζh only involves the connective operator of the 

Navier-Stokes equations. In this case, the discrete velocity and pressure spaces have to satisfy 
the BB stability condition, as for the Galerkin approach. It is also possible to introduce a 
perturbation involving the pressure test function, which allows to circumvent this condition and 
therefore to use equal-order interpolations for the velocity and the pressure9. 

The same procedure is applied for the temperature equation, replacing the cell Reynolds 
number by the cell Péclet number (Pe)e := ρcp|ue|he/2k, and also for the pseudo-concentration 
equation, now taking βe = β0. 

We shall consider that the matrices and vectors in (5)–(8) account for the SUPG contributions. 
For further details the reader is referred to Reference 3. 

Discretization in time 
The generalized trapezoidal rule has been used to discretize the time derivatives of (5)-(8). 

Let αЄ[0, 1] be given. For a differential equation of the form x + A(x)x = f, x being the vector 
of nodal unknowns and A a matrix, the time discretization leads to: 

xn + ∆tαA(xn)xn = xn-1 – ∆t(1 – α)A(xn-1)xn-1 + ∆tαfn + ∆t(1 – α)fn-1 

where ∆t is the time step size and the superscript denotes the time step. For α = 0 this is the 
forward Euler scheme, which happens to be unconditionally unstable for the Navier-Stokes 
equations due to the zero divergence restriction. For the examples presented later, we have used 
α = 1 (backward Euler), yielding an unconditionally stable and first order accurate algorithm. 

Iterative techniques 
We shall briefly describe now the iterative techniques employed to solve the non-linear problem 

(5)-(8) once the time discretization has been performed. First, let us consider the momentum 
equation (5). The convective term may be linearized either up to first order (Picard scheme) or 
up to second order (Newton-Raphson algorithm). The nonlinear terms arising from the 
application of the SUPG formulation are difficult to linearize up to second order. We shall 
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adopt the simple Picard scheme (fixed point), which also has a much larger attraction ball than 
the Newton-Raphson method. Also, when the problem is thermally coupled we use a 
block-iterative algorithm3, whose convergence rate is only linear. Therefore, there is also not 
much gain in using a second order linearization of the Navier-Stokes equations in this case. 

Both the iterations due to the linearization of the momentum equation and the block iterative 
algorithm, if needed, will be dealt with in a single iterative loop, in which also the following 
iterative penalty method will be introduced. Let n and i denote the time step and iteration 
counters, respectively. The standard penalty method consists in replacing the incompressibility 
equation (6) by: 

ΕMpPn,i + GTUn,i = 0 (11) 
where Ε is a small positive number and Mp is the Gramm matrix coming from the pressure 
interpolation. The artificial compressibility method would lead to 

ΕMpPn,i + GTUn,i = ΕMpPn-1 (12) 
which results from the discretization of the mass conservation equation for a slightly compressible 
fluid: 

after identifying Ε with 1/c2∆t, c being the speed of sound in the fluid and ∆t the time step size. 
To arrive at (12) from (13) the backward Euler scheme in time has to be employed. 

Instead of using the standard penalty method (11) or the artificial compressibility method 
(12), we use the following: 

ΕMpPn,i + GTUn,i = ΕMpPn,i-1 (14) 
This method is described in detail for non-Newtonian flows and fully analyzed for the 

Navier-Stokes equation in Reference 32. The incompressibility restriction is iteratively 
approximated as the iterative procedure goes on, thus allowing to use penalty parameters much 
larger than using (11). This is an aspect of fundamental importance when the 
pseudo-concentration technique is used, since in this case the viscosity of the fluid analyzed may 
be several orders of magnitude larger than that of the fictitious material, and therefore, the 
problem is itself ill-conditioned. If very small values of ε are used, this ill-conditioning is 
aggravated. 

FRONT SMOOTHING AND AIR RELEASE 

The use of the pseudo-concentration method described above provides a basic technique to 
track free-surfaces of viscous incompressible flows, although several problems appear when it 
is implemented in a computer code. One of them is the choice of the function ψ. If we take a 
step function, as indicated before, numerical problems may be encountered when it is transported. 
It is known that small oscillations in the vicinity of sharp gradients still remain using the SUPG 
formulation10. These oscillations may propagate and yield to distorted front shapes, especially 
near corners. Since the basic idea of the method does not depend on the choice of the function 
ψ, it is preferable to use a smooth function instead of one with abrupt changes. The smoothing 
technique we employ will be discussed below. Nevertheless, we have found that if the peaks 
encountered when dealing with a step function are just eliminated for each time step, an accurate 
tracking of the front is obtained using the SUPG method. 

Another problem to be considered is the evacuation of air bubbles. Since we deal with 
incompressible flows, air cannot shrink and air bubbles near the corners will remain if a method 
to evacuate them is not devised. In practice, moulds are made of porous materials, usually sand 
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in casting applications. Therefore, air can leave the mould without resistance. Numerically, a 
possible way to evacuate air is to introduce holes on the boundary and to block them when the 
fluid touches the wall. This method will also be explained in the following. 

Smoothing of the pseudo-concentration surface 
Even if the initial condition ψ0(x) is a smooth function, if the pseudo-concentration is 

maintained unmodified over several time steps it may begin to lose its smoothness and numerical 
problems may be encountered. Since the only important factor is the location of the critical 
contour that defines the front, it is possible to smooth ψ while maintaining the position of this 
critical contour. Following Thompson12, this can be performed redefining the pseudo-
concentration for each node of the finite element mesh according to the following expression: 

ψ = ψc + sgn(ψ0 - ψc)σd (15) 
where ψ0 stands for the calculated value of ψ, σ is a given constant, d is the distance from the 
node under consideration to the front and sgn(·) is the signum of the value enclosed in the 
brackets. 

Equation (15) indicates that the smoothed pseudo-concentration is obtained adding or 
subtracting to the critical value a quantity proportional to the distance to the front, according 
to which material occupies the point (the fluid analyzed or air). The constant σ is the slope of 
the new pseudo-concentration surface in the direction normal to the front. 

The crucial point is how to calculate the distance d from a point under consideration to the 
front. The method we have used for 2-D problems will now be briefly described. 

Once we know the values of the pseudo-concentration for all the nodal points, it is possible 
to calculate the position of the points of the front located at the sides of the elements. This can 
be done by checking if the sign of ψ – ψc changes when passing from a certain node of an 
element to the adjacent one. When this happens, the position where the value ψc is attained can 
be computed using a linear interpolation between the values of ψ at the two nodes identified 
and the coordinates of these two nodes. In the most common case in which only one front 
crosses the element, two front points which are part of the element sides will be found. Between 
these two points, the position of a specified number of additional front points may be calculated 
by interpolating the front within each element by a straight line. If more than a single front 
crosses the element, an even number of front points lying on the element sides will be found. 
The way to connect pairs of them is easily established by moving along the boundary and 
checking the sign of ψ – ψc. 

When the process just described is finished, the front will be represented by a set of points 
lying on straight segments within each element. The distance d from a considered point to the 
front is then computed as the minimum of the distances to all these front points. 

The accuracy of this method depends on the smoothness of the front (not on the 
pseudo-concentration), as well as on the number of front points to be interpolated within each 
element. Clearly, if the front presents a sharp corner within a certain element, the approximation 
by a straight segment will be indeed poor. Moreover, advancing in time the approximation error 
will add up and the final representation of the front may be completely wrong. In these cases 
the smoothing of the pseudo-concentration is not recommended. We have solved some problems 
of this kind just using a step function for ψ and without smoothing. However, when the front 
is smooth, this method has proved to be quite effective. In general, we have found that four or 
five additional front points interpolated within each element are needed when quadratic elements 
are used. 

For the particular case of finite elements with interior nodes, such as the Q2/P1 or the 
(quadratic velocities enriched with bubble functions, piecewise linear pressures) pairs, this 
smoothing technique has an additional problem that we have observed while running some test 
cases. Let us consider the situation illustrated in Figure 1 for the two-dimensional Q2/P1 element. 
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The nodes of the element have been denoted by N1, N2,..., N9, the front points located on 
the sides of the element by E1, E2 and the additional front points by A1, A2. In the situation 
of the picture on the left of Figure 1, application of (15) computing the distance d as explained 
above will lead to 

where dr is the real distance from node N9 to the front. The inequality (16) indicates that we 
are underestimating the value of ψ at node N9. The error will be much smaller for nodes N4 
and N8. After solving the transport equation for the pseudo-concentration it may happen that 
nodes N4 and N8 are already part of the fluid whereas node N9 remains in the unfilled region 
(see the picture on the right of Figure 1). Since the fluid front will be again approximated by a 
straight segment, node N9 may be situated at the wrong side of this. Applying again (15) we 
will obtain: 

It is even possible that . In any case, there exists the possibility that as the fluid front 
advances a spurious bubble around node N9 be left behind. We have observed this misbehaviour 
in practice. 

The way to circumvent this problem is quite simple. Once the values of the smoothed 
pseudo-concentration for the nodes lying on the element sides have been calculated using (15), 
the value for the interior node is computed from interpolation. The serendipid interpolation 

is used for the biquadratic element (Q2) and the quadratic simplicial interpolation (P2) for 
the enriched simplex . 

Air release—Introduction of holes 
It has already been said that in practical problems air can leave the mould through its porous 

walls. Numerical models must incorporate a facility to evacuate air in order to prevent the 
appearance of air bubbles, especially near the corners. 

The basic idea of the method to be described now is to place some holes in the walls of the 
mould and to block them when the fluid reaches these walls. Thus, air will be allowed to leave 
the mould but the fluid analyzed will not. 

To motivate the basic inconvenience of this method, let us describe how boundary conditions 
are implemented in the computer code developed in this work. If a boundary node has a 
Neumann type prescription, its velocity is one of the unknowns of the problem. But if a Dirichlet 
condition is prescribed there, the velocity vector is known. The columns and rows corresponding 
to the node under consideration of the assembled matrix of the final algebraic system are not 
needed. The product of the columns by the velocity components of the node are moved to the 
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right-hand-side. The matrix of the resulting reduced system, say A, will be smaller than if these 
columns and rows are not eliminated. Since we work with dynamic memory allocation, the 
dimension of matrix A has to be known before starting the analysis, after reading the data of 
the problem. Hence, the change of a node from a Neumann boundary condition to a Dirichlet 
boundary condition during the analysis is not so simple as it might seem at first glance. 

In order to avoid the need for changing the size of the problem, we leave the nodes located 
at the holes always free. When the fluid reaches them, the velocity (or perhaps only the component 
normal to the wall) is prescribed to zero not exactly, but through penalization. 

To describe this method, let us consider a generic linear system of the form: 
Ax = b (17) 

where x is a vector of n unknowns. Suppose that the ith component of x is to be prescribed to 
a value , i.e., . From (17) we will have that: 

Assume that the component aii of matrix A is not zero and replace: 

From (18) it follows that: 

and therefore as λ→∞. 
In practice, we have observed that values of λ of order 106 yield a good enough approximation 

to the prescription to be imposed (observe that λ is dimensionless). 
The way to block the holes is now clear. For a certain time step, the value of the 

pseudo-concentration at the point of interest is computed. If this value ψ is lower than ψc, λ = 0 
is taken for the system analogous to (17) arising from the fully discrete and linearized 
Navier-Stokes equations and the redefinition (19) is not performed. Otherwise, a high value of 
λ is selected, taking in (19). 

Consider now the transport equation for the pseudo-concentration. If for a certain time step 
the velocity at a node lying on the hole is left free, it may point into the mould due to suction 
effects. In this situation, the hole must be considered as a part of the inflow boundary Γinf and 
therefore the function λ must be prescribed there. Otherwise, it may happen that values of ψ 
higher than ψc be transported into the mould, thus introducing spurious fluid. The situation is 
similar to what happens for the one-dimensional hyperbolic equation: 

If u > 0 and the value of ψ at x = 0 is not prescribed, the solution is simply ψ(x, t) = ψ0(x – ut), 
where ψ0(x) is the initial condition extended by periodicity to the whole real line R. 

There is another way to see that if ψ is not prescribed at the nodes for which the velocity 
points into the mould then spurious material will be introduced. Let Vt be any control volume 
surrounding this node. Multiplying the equation in (4) by ψ, integrating over Vt and using the 
fact that u is divergence-free yields: 
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Box 1 Checks for temporary free wall nodes 

• IF < ψc then 
• IF n·u < 0 then 

Prescribe to 
ELSE 

Leave free 
END 

• Leave u free (Neumann type condition) 
ELSE 

• Prescribe u = 0 
• Leave ψb free 

END 

If ψ is not prescribed where n·u < 0, the integral of ψ2 over Vt may increase as time goes on, 
and this happens for any control volume Vt, that is, a spurious fluid-filled region may appear 
around the hole. 

Having these considerations in mind, it is clear that the pseudo-concentration must be 
prescribed at the temporary free wall nodes where n·u < 0. For a certain time step, the value 
of the prescription will be the value obtained in the previous one. The way to implement this 
is the same as for the velocities in the Navier-Stokes equations. Let the value of the 
pseudo-concentration at the node under consideration for time step n – 1. Considering that the 
system to be solved to find ψ for time step n is (17), the redefinition (19) will be employed, with 

. Again, we have found that good results are obtained taking A of order 106. 
The checks to be performed for temporary free boundary nodes are summarized in Box 1. It 

is understood that all the variables (pseudo-concentration and velocity) refer to a certain node 
and that Dirichlet boundary conditions are prescribed according to the penalty technique 
described here. 

SOME FURTHER REMARKS 

Using the pseudo-concentration method, the value of the physical properties has to be stored 
for each integration point of each element. Let us denote by π any of them and by its value 
at the kth integration point of the eth element. To determine how to calculate it we first must 
know the value of the pseudo-concentration at this point, ψe(ξk), which is easily calculated from 
the standard interpolation from the nodal values of ψ for the element. Then, the discrete 
counterpart of (3) is: 

The property π for the fluid analyzed may depend on the velocity and the temperature (see 
examples in Reference 5). For the air, it may be any constant provided that the motion of the 
resulting fictitious fluid do not affect the motion of the real fluid. There is also the possibility 
of using the real air properties. We do not use any averaging of properties within the elements. 

The final transient and iterative algorithm is given in Box 2 (terms in italics denote logical 
variables, N is the total number of time steps). The basic calculations needed to track the free 
surface are included. The pseudo-concentration may be calculated at the beginning of the time 
step or at the end (staggered with respect to the Navier-Stokes equations). This last choice is 
considered in Box 2. Both options are equally valid, but one must keep in mind that if the 
former is chosen the front will be 'delayed' one time step with respect to the velocity and pressure, 
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Box 2 General algorithm including free-surface tracking 

• Set the initial condition U0, P0 = 0, Θ0 and Ψ0 

• n := 0 
• WHILE n < N and (non-stationary) DO: 

• n ← n + 1 
• i := 0 
• WHILE (not converged) DO: 

• i ← i + 1 
• Solve the Navier-Stokes equations 
• Update the physical properties and forcing terms 
• Check convergence 

END while (not converged) 
• Solve the temperature equation 
• Check the sign of n·u for the temporary wall nodes and adjust the boundary conditions for ψ 

(see Box 1) 
• Solve the pseudo-concentration equation 
• Smooth the pseudo-concentration (see (15)) 
• Update the physical properties according to (20) 
• Check whether ψ ≥ ψc or ψ < ψc for the temporary free wall nodes and adjust the boundary 

conditions for u (see Box 1) 
• Check if the steady-state has been reached 

END while n < N and (non-stationary) 
END 

whereas if the second possibility is adopted the situation will be the inverse. It could also be 
possible to include the calculation of the pseudo-concentration within the block iterative loop. 
We have found that this leads to convergence problems, which are due to the fact that an 
integration point may belong to the fluid in a certain iteration and to the air in the next one, 
thus having different physical properties from iteration to iteration. 

In Box 2, it is understood that the boundary conditions for the temporary free wall nodes 
are always adjusted using the penalization method described in the section entitled 'Front 
Smoothing and Air Release'. 

In the most common situation, the fluid front will cross an element. For some of its integration 
points the properties of the fluid will be used and for the others the properties of the air. Clearly, 
the accuracy of the integration rule will be poor for these elements, although this should not 
affect much the global accuracy. Also, there will be a jump in the fluxes of temperature and 
stresses that we have not considered. Let us denote by the part of the front crossing element 
e. Considering for example the temperature equation, this jump (arising from the application 
of the divergence theorem) will be 

where η is the test function for the temperature. For the finite element discretization, the 
derivatives of within each element will be continuous, i.e., , and therefore 
this integral will not vanish if the diffusions are different. The continuity of heat fluxes for the 
continuous problem implies that the bracketed term must be zero. The influence of the inclusion 
of the jump in the finite element problem is an aspect that deserves greater attention. 

Let us finally mention that the iterative penalty method defined by (14) has proved to be a 
fundamental ingredient for the success of the pseudo-concentration technique. In practical 
situations, especially for highly viscous flows, the viscosity of the fictitious material will be several 
orders of magnitude smaller than that of the fluid analyzed. Even if the exact value for the air 



302 R. CODINA, U. SCHÄFER AND E. OÑATE 

is not used, it must be between 3 and 5 orders of magnitude smaller. Hence, choosing a priori 
a penalty parameter for the classical penalty method will yield unavoidably a poor approximation 
to the incompressibility constraint or to ill-conditioning. This is aggravated by the fact that 
contiguous elements may have stiffness matrices of an order of magnitude completely different. 
We have observed from several numerical experiments that if ε is taken as (assuming 
the fluid viscosity to be constant) and μair = 10-3/μfluid, ill-conditioning is observed for values 
of n as small as 3 (we have used the check proposed in Reference 14, Chapter 15, for 
ill-conditioning). 

NUMERICAL EXAMPLE 

We shall now present some results for the numerical simulation of the filling of the mould shown 
in Figure 2. The geometry and experimental results for this problem have been provided by 
Renault Automobiles. The experiments have been carried out using Gallium, a metal well suited 
to experimentation because it has a low fusion point (30°C) and, therefore, it is easy to use and 
recover it in the laboratory, once the experiments are finished. Moreover, its properties are close 
enough to those of the aluminium and other metals used in casting applications. 

The molten metal enters through the left gate shown in Figure 2 with a horizontal velocity 
of 0.31 m/s. The vertical velocity is accommodated to the slope of the top wall of the entering 
gate. The physical properties of the molten Gallium at 55°C (all in SI units) are ρ = 5.9 × 103 

(density), μ = 1.9 × 1 0 - 3 (dynamical viscosity), k = 30.4 (thermal conduction coefficient) and 
cp = 250 (specific heat at constant pressure). Thus, the Reynolds number based on the velocity 
that enters the cavity (0.62) and its longitudinal length (0.1) is Re = 1.93 × 105. The flow is 
clearly turbulent for such a high Reynolds number and it is impossible to simulate it with a 
laminar model such as ours. The physical properties of air are ρ = 1.2, μ = 1.8 × 10-5,cp = 1005 
and k = 0.0256. In order to reproduce the relative importance of all the physical effects, we have 
used the real properties of the Gallium and the air except for the dynamical viscosity, which 
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has been taken 10n times higher for both the Gallium and the air. Results are qualitatively 
similar for n = 3 and n = 2 (the value used here). We failed to obtain a converged solution for 
lower values of this exponent. 

The boundary conditions for this problem are normal velocities at the walls and zero tangential 
stresses, i.e., no friction with the walls is considered. The fluid is assumed to be initially at the 
entrance of the left gate. A thermally uncoupled flow model is adopted. Therefore, it is possible 
to deal with relative temperatures. The temperature of the Gallium has been assumed to be 
40°C higher than that of the air. The walls of the mould have been assumed to be adiabatic, 
although we know that this is not realistic. 

The finite element mesh designed for this problem is shown in Figure 3. It consists of 548 
Q2/P1 elements and 2351 nodal points. The iterative penalty method has been employed, using 
a penalty parameter ε = 10 -4 . The backward Euler scheme has been used to advance in time 
for the three transient problems to be solved (velocity-pressure, temperature and 
pseudo-concentration). The smoothing technique described in Section 4 has been used, with 
σ=1 and five additional points within each element to compute the distance d (see (15)). Within 
each time step, of size ∆t = 0.01, the advection of the pseudo-concentration has been solved 
first and then iterations have been carried out (between three and four) to obtain a converged 
solution of the Navier-Stokes equations (with a tolerance 0.1%). Finally, the temperature 
equation has been solved. 

In order to allow the air evacuation, some holes have been introduced on the walls of the 
mould. They are schematically shown in Figure 2 (three or four nodes of the finite element 
discretization correspond to each hole). The parameter λ to block them when the Gallium 
touches the wall has been taken as λ = 106. 
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The position of the fluid front at different times is depicted in Figures 4-7. It is observed how 
several air bubbles appear in the Gallium. This fact is also observed in the experimental results, 
with which the numerical simulation shows a good qualitative agreement. These experimental 
results are shown in the colour pictures for t = 0.2, 0.6, 1.2, 1.4, 1.6 and 1.8, approximately. 
The differences should be attributed to the different Reynolds number of the numerical 
calculation. Air bubbles disappear as time goes on due to the artificial effect of the smoothing 
technique. Observe from Figure 1 that the interpolation of the front by a straight segment within 
each element will advance or delay artificially the front depending on its curvature. Physically, 
air bubbles disappear because air can escape through the porous lateral walls of the sand mould. 

Figures 8 and 9 show the position of the fluid front, the streamline pattern, the pressure 
contours and the temperature contours at different times. From the streamline plots, it is observed 
how air enters or leaves the mould through the holes, as well as the creation of vortices due to 
the transmission of shear stresses. From the pressure plots it is seen that pressure gradients are 
rapidly dissipated in the air region. This indicates that the motion of air does not influence 
much that of the Gallium. Iso-temperature curves show how heat is basically transported through 
convection. Conduction transport is only apparent in regions occupied by Gallium that has first 
entered the cavity. It is remarkable to note the high temperature gradients that the numerical 
method is able to capture at the interface between hot Gallium and cold air. 

Referring now to some computational aspects of the calculation, the behaviour of the iterative 
penalty method has been found to be very effective. The convergence history and the evolution 
of the norm of the incompressibility constraint for time step number 77 are shown in Figure 10. 
It is observed that this norm decreases almost three orders of magnitude in four iterations. This 
decrease is even more accentuated for the first time steps (not shown). Starting from a value of 
order 10 -7, a final value of order 10-11 is obtained in four iterations. 
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Most of the computational cost of the simulation is due to the solution of the Navier-Stokes 
equations. The CPU time per iteration needed on a CONVEX-C320 computer has been 24.27 
seconds (54.96% for the formation of the element matrices, 44.96% for the solution of the linear 
system). The pseudo-concentration and the temperature equations are solved only once per time 
step. The CPU time needed has been 5.03 (11.54% for the element matrices, 52.98% for the 
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linear system, 35.48% for the smoothing and updating of physical properties) and 3.05 seconds 
(24.83% for the element matrices, 75.16% for the linear system), respectively. 

CONCLUSION 

We have described in this paper some numerical techniques to solve the incompressible 
Navier-Stokes equations in combination with the method of pseudo-concentrations to track 
free surfaces. The crucial ingredients of the formulation are the iterative penalty method, to 
avoid the need for using very small penalty parameters, and the SUPG formulation to deal with 
convection dominated problems. Both strategies have been shown to be very effective for the 
practical problem presented here. Moreover, we have also considered some problems related 
to the application of the pseudo-concentration technique. In particular, we have described a 
method to compute the distance from a node to the fluid front and a numerical strategy to allow 
the evacuation of air from the mould has been proposed. 

From the numerical example presented it may be concluded that the numerical techniques 
introduced here provide an effective method for tracking free surfaces with complicated shapes. 
There are, of course, several limitations, mainly due to the difficulty to act upon the interface 
air-fluid (boundary conditions, surface tension), as well as some approximations inherent to the 
use of discontinuous physical properties. Nevertheless, the simplicity of the method and the 
good performance shown in practical problems make it a valuable tool, at least for laminar 
flows. In most casting applications the flow is however turbulent. We plan to implement a 
turbulence model in a near future using the basic numerical ingredients presented in this work. 
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